Problems
Computational number theory. Write a program CubeSum.java that prints out all integers of the form where andπ are integers between 0 and in sorted order, without using excessive space. That is, instead of computing an array of the sums and sorting them, build a minimum-oriented priority queue, initially containing . Then, while the priority queue is nonempty, remove the smallest item , print it, and then, if , insert the item . Use this program to find all distinct integers , and between 0 and such that π3+π3=, such as .
#include <iostream>
using namespace std;
class cubeSum {
public:
int i, j, sum;
cubeSum(int i = 0, int j = 0) {
this->sum = i * i * i + j * j * j;
this->i = i;
this->j = j;
}
int compareTo(const cubeSum &that) {
if (this->sum > that.sum) return 1;
else if (this->sum < that.sum) return -1;
return 0;
}
string toString() {
string res = to_string(sum) + " = " + to_string(i) + "^3" " + " + to_string(j) + "^3";
return res;
}
};
template <typename key>
class MinPQ {
key *arr;
int N;
int i = 0;
bool greeter(key &key1, key &key2) {
return key1.compareTo(key2) > 0;
}
void swim(int k) {
while (k > 1 && greeter(arr[k / 2], arr[k])) {
swap(arr[k], arr[k / 2]);
k = k / 2;
}
}
void sink(int k) {
while (2 * k <= i) {
int j = 2 * k;
if (j < i && greeter(arr[j], arr[j + 1])) j++; // find out which one is smaller 2k or 2k+1
if (!greeter(arr[k], arr[j])) break; // break if the parent's key is smaller than both children's key
swap(arr[k], arr[j]);
k = j; // moving down the heap
}
}
public:
MinPQ(int capacity) : N(capacity + 1) {
arr = new key[capacity + 1]{NULL};
}
bool isEmpty() {
return i == 0;
}
bool isFull() {
return i == N - 1;
}
// At most 1 + lg N compares
void insert(key val) {
arr[++i] = val;
swim(i);
}
// At most 2 lg N compares
key delMin() {
key min = arr[1];
swap(arr[1], arr[i--]);
sink(1);
arr[i + 1] = NULL; // prevent loitering
return min;
}
};
int main() {
int n = 4;
MinPQ<cubeSum> *PQ = new MinPQ<cubeSum>(n);
for (int i = 0; i < n; i++) {
cubeSum cb(i, i);
PQ->insert(cb);
}
while (!PQ->isEmpty()) {
cubeSum s = PQ->delMin();
if (s.j < n) {
cubeSum cb(s.i, s.j + 1);
PQ->insert(cb);
}
cout << s.toString() << endl;
}
}Index priority-queue implementation. Implement IndexMaxPQ.java by modifying MaxPQ.java as follows: Change pq[] to hold indices, add an array keys [ ] to hold the key values, and add an array qp[] that is the inverse of pq [] β qp[i] gives the position of i in pq[] (the index j such that pq[j] is i). Then modify the code to maintain these data structures. Use the convention that qp[i] is -1 if i is not on the queue, and include a method contains() that tests this condition. You need to modify the helper methods exch() and less() but not sink() or swim().
Last updated
Was this helpful?